Unsupervised Most Frequent Sense Detection using Word Embeddings

نویسندگان

  • Sudha Bhingardive
  • Dhirendra Singh
  • Rudramurthy V
  • Hanumant Harichandra Redkar
  • Pushpak Bhattacharyya
چکیده

An acid test for any new Word Sense Disambiguation (WSD) algorithm is its performance against the Most Frequent Sense (MFS). The field of WSD has found the MFS baseline very hard to beat. Clearly, if WSD researchers had access to MFS values, their striving to better this heuristic will push the WSD frontier. However, getting MFS values requires sense annotated corpus in enormous amounts, which is out of bounds for most languages, even if their WordNets are available. In this paper, we propose an unsupervised method for MFS detection from the untagged corpora, which exploits word embeddings. We compare the word embedding of a word with all its sense embeddings and obtain the predominant sense with the highest similarity. We observe significant performance gain for Hindi WSD over the WordNet First Sense (WFS) baseline. As for English, the SemCor baseline is bettered for those words whose frequency is greater than 2. Our approach is language and domain independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Most Frequent Sense using Word Embeddings and BabelNet

Since the inception of the SENSEVAL evaluation exercises there has been a great deal of recent research into Word Sense Disambiguation (WSD). Over the years, various supervised, unsupervised and knowledge based WSD systems have been proposed. Beating the first sense heuristics is a challenging task for these systems. In this paper, we present our work on Most Frequent Sense (MFS) detection usin...

متن کامل

An Iterative Approach for Unsupervised Most Frequent Sense Detection using WordNet and Word Embeddings

Given a word, what is the most frequent sense in which it occurs in a given corpus? Most Frequent Sense (MFS) is a strong baseline for unsupervised word sense disambiguation. If we have large amounts of sense-annotated corpora, MFS can be trivially created. However, senseannotated corpora are a rarity. In this paper, we propose a method which can compute MFS from raw corpora. Our approach itera...

متن کامل

Word sense induction using word embeddings and community detection in complex networks

Word Sense Induction (WSI) is the ability to automatically induce word senses from corpora. The WSI task was first proposed to overcome the limitations of manually annotated corpus that are required in word sense disambiguation systems. Even though several works have been proposed to induce word senses, existing systems are still very limited in the sense that they make use of structured, domai...

متن کامل

Understanding and Improving Multi-Sense Word Embeddings via Extended Robust Principal Component Analysis

Unsupervised learned representations of polysemous words generate a large of pseudo multi senses since unsupervised methods are overly sensitive to contextual variations. In this paper, we address the pseudo multi-sense detection for word embeddings by dimensionality reduction of sense pairs. We propose a novel principal analysis method, termed ExRPCA, designed to detect both pseudo multi sense...

متن کامل

Using Word Embeddings for Bilingual Unsupervised WSD

Unsupervised Word Sense Disambiguation (WSD) is one of the challenging problems in natural language processing. Recently, an unsupervised bilingual WSD approach has been proposed. This approach uses context aware EM formulation for estimating the sense distribution by using the co-occurrence counts of cross-linked words in comparable corpora. WordNetbased similarity measures are used for approx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015